61 research outputs found

    Synaptic Conductances during Interictal Discharges in Pyramidal Neurons of Rat Entorhinal Cortex

    Get PDF
    In epilepsy, the balance of excitation and inhibition underlying the basis of neural network activity shifts, resulting in neuronal network hyperexcitability and recurrent seizure-associated discharges. Mechanisms involved in ictal and interictal events are not fully understood, in particular, because of controversial data regarding the dynamics of excitatory and inhibitory synaptic conductances. In the present study, we estimated AMPAR-, NMDAR-, and GABAAR-mediated conductances during two distinct types of interictal discharge (IID) in pyramidal neurons of rat entorhinal cortex in cortico-hippocampal slices. Repetitively emerging seizure-like events and IIDs were recorded in high extracellular potassium, 4-aminopyridine, and reduced magnesium-containing solution. An original procedure for estimating synaptic conductance during IIDs was based on the differences among the current-voltage characteristics of the synaptic components. The synaptic conductance dynamics obtained revealed that the first type of IID is determined by activity of GABAAR channels with depolarized reversal potential. The second type of IID is determined by the interplay between excitation and inhibition, with prominent early AMPAR and prolonged depolarized GABAAR and NMDAR-mediated components. The study then validated the contribution of these components to IIDs by intracellular pharmacological isolation. These data provide new insights into the mechanisms of seizures generation, development, and cessation

    Seizure-Induced Potentiation of AMPA Receptor-Mediated Synaptic Transmission in the Entorhinal Cortex

    Get PDF
    Excessive excitation is considered one of the key mechanisms underlying epileptic seizures. We investigated changes in the evoked postsynaptic responses of medial entorhinal cortex (ERC) pyramidal neurons by seizure-like events (SLEs), using the modified 4-aminopyridine (4-AP) model of epileptiform activity. Rat brain slices were perfused with pro-epileptic solution contained 4-AP and elevated potassium and reduced magnesium concentration. We demonstrated that 15-min robust epileptiform activity in slices leads to an increase in the amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated component of the evoked response, as well as an increase in the polysynaptic γ-aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) receptor-mediated components. The increase in AMPA-mediated postsynaptic conductance depends on NMDA receptor activation. It persists for at least 15 min after the cessation of SLEs and is partly attributed to the inclusion of calcium-permeable AMPA receptors in the postsynaptic membrane. The mathematical modeling of the evoked responses using the conductance-based refractory density (CBRD) approach indicated that such augmentation of the AMPA receptor function and depolarization by GABA receptors results in prolonged firing that explains the increase in polysynaptic components, which contribute to overall network excitability. Taken together, our data suggest that AMPA receptor enhancement could be a critical determinant of sustained status epilepticus (SE)

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+ee^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    A simple model of epileptic seizure propagation: Potassium diffusion versus axo-dendritic spread.

    No full text
    The mechanisms of epileptic discharge generation and spread are not yet fully known. A recently proposed simple biophysical model of interictal and ictal discharges, Epileptor-2, reproduces well the main features of neuronal excitation and ionic dynamics during discharge generation. In order to distinguish between two hypothesized mechanisms of discharge propagation, we extend the model to the case of two-dimensional propagation along the cortical neural tissue. The first mechanism is based on extracellular potassium diffusion, and the second is the propagation of spikes and postsynaptic signals along axons and dendrites. Our simulations show that potassium diffusion is too slow to reproduce an experimentally observed speed of ictal wavefront propagation (tenths of mm/s). By contrast, the synaptic mechanism predicts well the speed and synchronization of the pre-ictal bursts before the ictal front and the afterdischarges in the ictal core. Though this fact diminishes the role of diffusion and electrodiffusion, the model nevertheless highlights the role of potassium extrusion during neuronal excitation, which provides a positive feedback that changes at the ictal wavefront the balance of excitation versus inhibition in favor of excitation. This finding may help to find a target for a treatment to prevent seizure propagation

    Mathematical model of Na-K-Cl homeostasis in ictal and interictal discharges.

    No full text
    Despite big experimental data on the phenomena and mechanisms of the generation of ictal and interictal discharges (IDs and IIDs), mathematical models that can describe the synaptic interactions of neurons and the ionic dynamics in biophysical detail are not well-established. Based on experimental recordings of combined hippocampal-entorhinal cortex slices from rats in a high-potassium and a low-magnesium solution containing 4-aminopyridine as well as previous observations of similar experimental models, this type of mathematical model has been developed. The model describes neuronal excitation through the application of the conductance-based refractory density approach for three neuronal populations: two populations of glutamatergic neurons with hyperpolarizing and depolarizing GABAergic synapses and one GABAergic population. The ionic dynamics account for the contributions of voltage-gated and synaptic channels, active and passive transporters, and diffusion. The relatively slow dynamics of potassium, chloride, and sodium ion concentrations determine the transitions from pure GABAergic IIDs to IDs and GABA-glutamatergic IIDs. The model reproduces different types of IIDs, including those initiated by interneurons; repetitive IDs; tonic and bursting modes of an ID composed of clustered IID-like events. The simulations revealed contributions from different ionic channels to the ion concentration dynamics before and during ID generation. The proposed model is a step forward to an optimal mathematical description of the mechanisms of epileptic discharges

    Computational model of interictal discharges triggered by interneurons.

    No full text
    Interictal discharges (IIDs) are abnormal waveforms registered in the periods before or between seizures. IIDs that are initiated by GABAergic interneurons have not been mathematically modeled yet. In the present study, a mathematical model that describes the mechanisms of these discharges is proposed. The model is based on the experimental recordings of IIDs in pyramidal neurons of the rat entorhinal cortex and estimations of synaptic conductances during IIDs. IIDs were induced in cortico-hippocampal slices by applying an extracellular solution with 4-aminopyridine, high potassium, and low magnesium concentrations. Two different types of IIDs initiated by interneurons were observed. The first type of IID (IID1) was pure GABAergic. The second type of IID (IID2) was induced by GABAergic excitation and maintained by recurrent interactions of both GABA- and glutamatergic neuronal populations. The model employed the conductance-based refractory density (CBRD) approach, which accurately approximates the firing rate of a population of similar Hodgkin-Huxley-like neurons. The model of coupled excitatory and inhibitory populations includes AMPA, NMDA, and GABA-receptor-mediated synapses and gap junctions. These neurons receive both arbitrary deterministic input and individual colored Gaussian noise. Both types of IIDs were successfully reproduced in the model by setting two different depolarized levels for GABA-mediated current reversal potential. It was revealed that short-term synaptic depression is a crucial factor in ceasing each of the discharges, and it also determines their durations and frequencies
    corecore